CENTRAL LiMIT THEOREM

Here is a look at a strong assumptions version of the CLT. The CLT works under weaker assumptions,
but its proof is more difficult.

Theorem 1 If X;, Xs,... are independent and identically distributed like a random variable X with finite
mean, u, and finite variance o2, then
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In other words, (S, — nu)/(cy/n) 4 Z or (X —p)/(c/v/n) —L, 7 where Z ~ N(0,1).
Proof 1 Let

Since (X; — p)/(oy/n), i = 1,2,... are independent random variables, and since the mgf of the sum of
independent random variables is equal to the product of their mgf’s, we can write
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since the random variables are tid. Hence
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Now from before [see mgf notes] we know that
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and since E(X — p) =0 and E [(X — p)?] = 0% we have
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where 6, — 0 as n — 00. So
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5% and recall that

Now let ¢,, =

lim <1+a+cn) = e
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if limy, oo ¢, = 0. We now have
lim My, (s) =e /2 (11)
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But, es’/2 s the mgf of a standard normal random variable.



