
Central Limit Theorem

Here is a look at a strong assumptions version of the CLT. The CLT works under weaker assumptions,
but its proof is more difficult.

Theorem 1 If X1, X2, . . . are independent and identically distributed like a random variable X with finite
mean, µ, and finite variance σ2, then
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since the random variables are iid. Hence
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Now from before [see mgf notes] we know that
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where θn → 0 as n→∞. So
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Now let cn = θns
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But, es
2/2 is the mgf of a standard normal random variable.


